Quiz 7; Tuesday, 3/12/2019
Section \#203; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE The geometric distribution assumes that trials are dependent (without replacement) while the binomial distribution assumes that trials are independent.

Solution: The geometric and binomial distribution both assume that the trials are independent.
2. TRUE False If f is the PMF of a random variable X, it is possible for $f(E[X])=0$.

Solution: An example is a die roll. The expected value of a die roll is 3.5 but it is not possible to roll a 3.5.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (3 points) I am fishing and the number of spots each fish has is Poisson distributed with an average of 0.5 spots per fish. What is the probability that in a group of 12 fish, they have a total of 8 spots total?

Solution: In a group of 12 , we expect to see $\lambda=12 \cdot 0.5=6$ spots amongst them. This is Poisson distributed so the probability of them having 8 spots among them is $f(8)=\frac{\lambda^{8} e^{-\lambda}}{8!}=\frac{6^{8} e^{-6}}{8!}$.
(b) (4 points) Now suppose I catch 30 random fish and on average, I expect that 10 are striped. If there are 100 total striped fish in the pool, how many total fish are there?

Solution: This is a hyper-geometric distribution because out of the total N fish, there are $m=100$ who are striped and in a selection of $n=30$ fish, we expect to see $E[X]=10$ of them. Thus, we have that

$$
10=E[X]=\frac{m n}{N}=\frac{100 \cdot 30}{N}
$$

So $N=\frac{100 \cdot 30}{10}=300$.
(c) (3 points) With the same numbers as part (b), suppose that I catch 10 fish. What is the probability that amongst them, 3 of them have stripes?

Solution: As said before, this is a hyper-geometric distribution with $m=100$ and $N=300$. Then $n=10$ because there are 10 fish picked and we want to calculate the probability that we have $k=4$ striped ones. The probability of this is

$$
f(4)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}=\frac{\binom{100}{3}\binom{200}{7}}{\binom{300}{10}} .
$$

